
Scala
compared to SML/NJ

by djls45

Functional Object-Oriented
(FOO) Programming

Outline

● Introduction
● Getting Started

○ Code Layout
○ Example Program

● Language Features
○ Types
○ Variables
○ Expressions
○ Control Structures
○ Subprograms

● Summary

Introduction

● History
○ Designed in 2001
○ Created in 2003
○ By Martin Odersky, a professor at Ecole

Polytechnique Fédérale de Lausanne
○ He wanted to merge functional and object-oriented

programming.
○ Came from Funnel, a language for describing

functional nets
○ Compiles to Java bytecode

Code Layout

● Files follow standard Java package layout.
● Whitespace is not usually significant.
● Comments are the same as C/C++/Java.
● Semicolons are optional.
● Parentheses may be optional.
● All terms are case-sensitive.

Example Program
//package factorials

object Factorials {

 def fact(num: Int): Int = {

 if (num < 2) 1 else num * fact(num-1)

 }

 def main(args: Array[String]) {

for(ln <- io.Source.stdin.getLines)

println(fact(ln.toInt))

 }

}

fun fact x = if x<2 then 1 else x*fact(x-1);

let val keepgoing:bool ref = ref true

in

while !keepgoing do

let val num = valOf(TextIO.inputLine
TextIO.stdIn)

in

print(Int.toString(fact(
valOf(Int.fromString(num)))));

keepgoing := not(null(
explode(num)))

 end

end;

Types

Scala
● Strongly typed
● No primitives
● Type inference
● Explicit conversion
● No reference types
● Everything is an

object.

SML
● Strongly typed
● Basic primitives
● Type inference
● Explicit conversion
● Special ref types
● Objects and

functions

Variables

Scala
● Static typing
● val/var
● All variables must

be given a value at
declaration.

● No null.
● Function

parameters
○ Call by value (eager)
○ Call by name (lazy)

SML
● Static typing
● val
● All variables must

be defined at
declaration.

● [] is generic null.
● Function

parameters
○ Call by value (eager)

Expressions

Scala
● Standard order of

operations
○ 2-arity operators are

function calls with
optional infix notation.

● No implicit conversions
● Newlines or semicolons

can end expressions.
● Parentheses are usually

optional, but are
recommended.

SML
● Standard order of

operations
○ Operators are

function calls.

● No implicit conversions
● Newlines end

expressions.
● Parentheses are required

for setting order of
evaluation and for tuples.

Control Structures

Scala
● Lots of loop

constructs
○ while
○ for

■ comprehensions
■ filters
■ yield

● Exceptions
○ throw
○ try-catch
○ finally

SML
● Only simple while

loop

● Exceptions
○ raise
○ handle

Subprograms

Scala
● Parameters

○ By value
(eager evaluation)

○ By name
(lazy evaluation)

● Static scope
● Persistency

○ class variables
○ derive from Unit

● Huge library

SML
● Parameters

○ By value
(eager evaluation)

● Static scope
● No persistency

○ Can be emulated with
monads

● Very small library

Summary

Scala
● Readability +
● Writability +
● Reliability +

● Academic
● Commercial

○ Twitter
○ Novell
○ Xerox
○ The Guardian
○ Sony
○ FourSquare
○ Siemens
○ Électricité de France

SML
● Readability =
● Writability =
● Reliability -

● Academic

